Abstract
Atmospheric variability can impact biological populations by triggering facultative migrations, but the stability of these atmosphere-biosphere connections may be vulnerable to climate change. As an example, we consider the leading mode of continental-scale facultative migration of Pine Siskins, where the associated ecological mechanism is changes in resource availability, with a mechanistic pathway of climate conditions affecting mast seeding patterns in trees which in turn drive bird migration. The three summers prior to pine siskin irruption feature an alternating west-east mast-seeding dipole in conifer trees with opposite anomalies over western and eastern North America. The climate driver of this west-east mast-seeding dipole, referred to as the North American Dipole, occurs during summer in the historical record, but shifts to spring in response to future climate warming during this century in a majority of global climate models. Identification of future changes in the timing of the climate driver of boreal forest mast seeding have broadly important implications for the dynamics of forest ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.