Abstract
Recently, high-speed switching circuits using SiC and GaN power devices have been developed for realizing higher efficiency. Stray inductance caused by the wiring structure between a DC capacitor and power devices is one of the most critical parameters for these high-speed switching circuits. In this paper a DC-side stray inductance design procedure for a high-speed switching circuit is presented based on a normalization procedure. The stray inductance is presented not as the absolute value [H] but as the percent value [%] based on the power rating of the converter circuit. By applying the proposed method, the stray inductance can be designed for a circuit depending on the switching time and the voltage and current ratings. To verify the normalization method, experimental results are shown using an all-SiC module at voltage and current ratings of 500 V and 100 A, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.