Abstract
The axial-shear strain distribution of soft tissue under load contains information useful for differentiating benign and malignant tumors. This paper describes a novel axial-shear strain normalization method. The algorithm builds on an existing normalization procedure for axial strain to map the shear strain values to the range [ -π/2, π/2]. The normalized shear data do not change sign with the direction of axial probe motion, and therefore can be time averaged without loss of information. Experiments in simulation, in vitro, and in vivo confirm the advantages of normalization. The proposed method is well suited to freehand strain imaging and enables the visualization of subtle slip patterns around inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.