Abstract

As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clusters; in other words, it finds symmetric and asymmetric objects. In this study, we developed a novel strategy that uses intelligent optimization algorithms to tackle a group of issues requiring sophisticated methods to solve. Three primary components are employed in the suggested technique, named GNDDMOA: Dwarf Mongoose Optimization Algorithm (DMOA), Generalized Normal Distribution (GNF), and Opposition-based Learning Strategy (OBL). These parts are used to organize the executions of the proposed method during the optimization process based on a unique transition mechanism to address the critical limitations of the original methods. Twenty-three test functions and eight data clustering tasks were utilized to evaluate the performance of the suggested method. The suggested method’s findings were compared to other well-known approaches. In all of the benchmark functions examined, the suggested GNDDMOA approach produced the best results. It performed very well in data clustering applications showing promising performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call