Abstract

Let $\xi=(\xi_i, 1 \leq i \leq n)$ and $\eta= (\eta_i, 1 \leq i \leq n)$ be standard normal random variables with covariance matrices $R^1=(r_{ij}^1)$ and $R^0=(r_{ij}^0)$, respectively. Slepian's lemma says that if $r_{ij}^1 \geq r_{ij}^0$ for $1 \leq i, j \leq n$, the lower bound $\P(\xi_i \leq u \mb{for} 1 \leq i \leq n ) /\P(\eta_i \leq u \mb{for} 1 \leq i \leq n ) $ is at least $1$. In this paper an upper bound is given. The usefulness of the upper bound is justified with three concrete applications: (i) the new law of the iterated logarithm of Erdős and Révész, (ii) the probability that a random polynomial does not have a real zero and (iii) the random pursuit problem for fractional Brownian particles. In particular, a conjecture of Kesten (1992) on the random pursuit problem for Brownian particles is confirmed, which leads to estimates of principal eigenvalues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.