Abstract
We propose an algorithm to generate inner and outer polyhedral approximations to the upper image of a bounded convex vector optimization problem. It is an outer approximation algorithm and is based on solving norm-minimizing scalarizations. Unlike Pascoletti–Serafini scalarization used in the literature for similar purposes, it does not involve a direction parameter. Therefore, the algorithm is free of direction-biasedness. We also propose a modification of the algorithm by introducing a suitable compact subset of the upper image, which helps in proving for the first time the finiteness of an algorithm for convex vector optimization. The computational performance of the algorithms is illustrated using some of the benchmark test problems, which shows promising results in comparison to a similar algorithm that is based on Pascoletti–Serafini scalarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.