Abstract

A non-volatile four-state magnetic memory is achieved in a Co/(011)Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. The in-plane magnetization of ferromagnetic Co film in the heterostructure can be controlled both electrically and magnetically. Electric field mediated magnetism is caused by piezostrain effect, which displays a stable non-volatile remnant magnetization vs electric field looplike behavior. In-plane strain-electric field (S-E) behavior under different temperatures reveals a non-volatile strain switching effect, which is responsible for the non-volatile remnant magnetization switching through piezostrain mediated magnetoelectric effect. Further investigations on temperature dependence of S-E behavior suggest that the absent of the second non-180° domain switching may be responsible for the asymmetry in strain curves that causes the non-volatile strain switching, and therefore causes the non-volatile remanent magnetization switching, which is crucial for the four-state magnetoelectric memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.