Abstract

During imaging, each infrared focal plane linear array scan detector detection unit determines a row of pixels in the image output. This sensor’s nonuniformity appears as horizontal stripes. Correcting nonuniformity in high-resolution images without destroying delicate details is challenging. In this paper, a single-frame-based nonuniformity correction algorithm is proposed. A portion of a single-frame picture is intercepted initially. The 1D column guided filter is applied to smooth the captured image in the vertical direction. Then, the smooth image and high-frequency component with horizontal stripes and texture information are obtained. The subsequent step is to use the smooth portion of the image as the guided image and the high-frequency portion of the image as the input, so that the estimated nonuniformity noise of the image may be extracted using a 1D row guided filter. The segment of the corrected image is then obtained by subtracting the estimated nonuniformity noise from the segment of the raw image. The correction coefficients could be obtained by performing a linear regression fit on the pre- and post-guided filtering image segments. With the correction coefficients, the entire image could be corrected. Based on qualitative and quantitative analysis, the proposed algorithm outperforms other current advanced algorithms in terms of nonuniformity correction and real-time performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.