Abstract

Microcontrollers have a low energy consumption and are convenient tools for the operation and readout of small lab-on-a-chip devices. The operation of microcontrollers for data collection and analysis is key for measurements and statistics in field experiments. However, for portable lab-on-a-chip or point-of-care systems in low-resource settings, the availability of energy sources is a bottleneck. Here, we present a simple, nontoxic aluminum/air redox battery with a 3D-printed housing for on-demand operation of a sensor using a microcontroller for data collection. The battery is stored in a dry state and can be manufactured conveniently using off-the-shelf components and a simple 3D printer. It can be quickly assembled and operates a microcontroller for at least one hour in continuous operation mode. We demonstrate its performance by collecting data from a capacitive sensor capable of determining the conductivity of liquid samples. Such sensors can be used for, e.g., determining the water quality or phase formation in liquid mixtures. The sensor performance in determining different conductivities of nonconductive and conductive liquids in droplets is demonstrated.

Highlights

  • The field of “mobile sensing” has rapidly evolved in the past years

  • We present a simple, nontoxic aluminum/air redox battery with a 3D-printed housing for on-demand operation of a sensor using a microcontroller for data collection

  • We demonstrate its performance by collecting data from a capacitive sensor capable of determining the conductivity of liquid samples

Read more

Summary

Introduction

The field of “mobile sensing” has rapidly evolved in the past years. As early as 2008, mobile phones were used for collecting data of microfluidic assays [1]. In terms of basic battery setups, metal/air batteries offer several advantages: they combine high energy density and capacity; the storage capacity is independent of charge and temperature; and they have low production costs, low discharge voltages, long shelf life at dry storage, and can be assembled from environmental harmless materials, which is why they are studied as alternative energy storage systems [13] They do not require highly reactive metals or hazardous elements such as mercury or cadmium [14]. Combining the concept of 3D printing with the use of nontoxic, readily available materials to create a disposable power source enables the quick and easy fabrication of reliable batteries that can be used to power sensor devices in low-resource settings. The sensor system is operated by a microprocessor with peripheral electronics mounted on a single printed circuit board (PCB) onto which the 3D printed battery is plugged

Materials and Methods
Conductivity Sensor Data Collection with Battery-operated Microcontroller
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.