Abstract
CCCH-type zinc-finger proteins play essential roles in regulating plant development and stress responses. However, the molecular and functional properties of non-tandem CCCH-type zinc-finger (non-TZF) proteins have been rarely characterized in plants. Here, we report the biological and molecular characterization of a sweet potato non-TZF gene, IbC3H18. We show that IbC3H18 exhibits tissue- and abiotic stress-specific expression, and could be effectively induced by abiotic stresses, including NaCl, polyethylene glycol (PEG) 6000, H2 O2 and abscisic acid (ABA) in sweet potato. Accordingly, overexpression of IbC3H18 led to increased, whereas knock-down of IbC3H18 resulted in decreased tolerance of sweet potato to salt, drought and oxidation stresses. In addition, IbC3H18 functions as a nuclear transcriptional activator and regulates the expression of a range of abiotic stress-responsive genes involved in reactive oxygen species (ROS) scavenging, ABA signaling, photosynthesis and ion transport pathways. Moreover, our data demonstrate that IbC3H18 physically interacts with IbPR5, and that overexpression of IbPR5 enhances salt and drought tolerance in transgenic tobacco plants. Collectively, our data indicate that IbC3H18 functions in enhancing abiotic stress tolerance in sweet potato, which may serve as a candidate gene for use in improving abiotic stress resistance in crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.