Abstract

This work proposes a hedonic random field model to describe house selling prices from 2000 to 2005 in Cedar Falls, Iowa. This real estate market presents two distinctive features that are not well described by traditional stationary Gaussian random field models: (a) the city has, on its periphery, a hoglot that acts as an externality, affecting both the mean and variance of the selling prices, and (b) the distribution of house selling prices display heavy tails, even after the distance to the hoglot and house–specific covariates are accounted for in the mean structure of the model. A non–stationary and non–Gaussian random field model is constructed by multiplying two independent Gaussian random fields tailored to model the probabilistic features displayed by the Cedar Falls dataset. A Markov chain Monte Carlo algorithm that uses data augmentation is employed to fit the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.