Abstract
We propose a nonspurious vector discontinuous Galerkin finite-element time-domain (DG-FETD) method for 3-D electromagnetic simulation. To facilitate the implementation of numerical fluxes for domain decomposition, we construct the DG-FETD scheme based on the first-order Maxwell's equations with variables E and H. The LT/QN and the CT/LN edge elements are employed to represent E and H, respectively (or vice versa), to suppress spurious modes, and the Riemann solver is utilized as the numerical flux to correct fields on the interfaces between adjacent subdomains. Numerical experiments show the nonspurious property of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.