Abstract

Abstract This paper presents an analytical approach for modeling the quasi-static characteristics of hydraulic actuators driven by four-valve independent metering circuits. The presented model is described as a nonsmooth, set-valued function from the velocity to the set of forces with which the equilibrium is achieved at the velocity. It is derived from algebraic relations among the velocity of the actuator, the steady-state force generated by the actuator, and the flowrate and the steady-state pressure at all valves in the circuit. This approach is also applied to more involving circuits including a regeneration pipeline and those with multiple actuators. The contribution of the paper can be seen as an example case study of the fact that these complicated circuit structures are analytically tractable through an extension of the conventional hydraulic–electric analogy. The obtained analytical expressions of the steady-state velocity–force relations allow for concise visualization of the actuators' characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.