Abstract

XPF/ERCC1 endonuclease is required for DNA lesion repair. To assess effects of a C2169A nonsense mutation in XPF at position 2169 in gastric cancer tissues and cell lines, genomic DNA was extracted from blood samples of 488 cancer patients and 64 gastric tumors. The mutation was mapped using a TaqMan MGB probe. In addition, gastric cancer cell lines were transfected with mutated XPF to explore XPF/ERCC1 interaction, XPF degradation, and DNA repair by a comet assay. The C2169A mutation was not detected in 488 samples of blood genomic DNA, yet was found in 32 of 64 gastric cancer tissue samples (50.0%), resulting in a 194C-terminal amino acid loss in XPF protein and lower expression. Laser micro-dissection confirmed that this point mutation was not present in surrounding normal tissues from the same patients. The truncated form of XPF (tXPF) impaired interaction with ERCC1, was rapidly degraded via ubiquitination, and resulted in reduced DNA repair. In gastric cancers, the mutation was monoallelic, indicating that XPF is a haplo-insufficient DNA repair gene. As the C2169A mutation is closely associated with gastric carcinogenesis in the Chinese population, our findings shine light on it as a therapeutic target for early diagnosis and treatment of gastric cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.