Abstract

BackgroundBovine hereditary zinc deficiency (BHZD) is an autosomal recessive disorder of cattle, first described in Holstein-Friesian animals. Affected calves suffer from severe skin lesions and show a poor general health status. Recently, eight calves with the phenotypic appearance of BHZD have been reported in the Fleckvieh cattle population.ResultsIn spite of the similar disease phenotypes, SLC39A4, the gene responsible for BHZD in Holstein-Friesian was excluded as underlying gene for the disorder in the affected Fleckvieh calves. In order to identify the disease-associated region, genotypes of eight affected calves obtained with the Illumina BovineHD BeadChip comprising 777,962 SNPs were contrasted with the genotypes of 1,339 unaffected animals. A strong association signal was observed on chromosome 21 (P = 5.87 × 10-89). Autozygosity mapping in the eight affected animals revealed a common segment of extended homozygosity encompassing 1,023 kb (BTA 21: 70,550,045 - 71,573,501). This region contains 17 genes/transcripts, among them two genes encoding gastro-intestinal zinc transporters (CRIP1, CRIP2). However, no mutation that was compatible with recessive inheritance could be detected in these candidate genes. One of the affected calves was re-sequenced together with 42 unaffected Fleckvieh animals. Analysis of the sequencing data revealed a nonsense mutation (p.W215X) in a phospholipase encoding gene (PLD4) as candidate causal polymorphism. To confirm the causality, genotypes of the p.W215X-mutation were obtained from 3,650 animals representing three different breeds. None of the unaffected animals was homozygous for the defect allele, while all eight affected calves were homozygous. The deleterious effect of the mutation is manifested in a significantly lower survival rate of descendants from risk matings when compared with the survival rate of descendants from non-risk matings. The deleterious allele has an estimated frequency of 1.1% in the Fleckvieh population.ConclusionOur results provide strong evidence that a newly identified recessive disorder in the Fleckvieh population is caused by a nonsense mutation in PLD4, most likely resulting in an impaired function of the encoded protein. Although the phenotype of affected calves strongly resembles BHZD, a zinc deficiency resulting from malabsorption is unlikely to be responsible for the diseased Fleckvieh calves.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-623) contains supplementary material, which is available to authorized users.

Highlights

  • Bovine hereditary zinc deficiency (BHZD) is an autosomal recessive disorder of cattle, first described in Holstein-Friesian animals

  • Phenotypic manifestation of the defect Seven calves between the age of seven and 17 weeks with severe skin lesions and poor general health status were admitted to the Clinic of Ruminants

  • Eight calves with severe skin lesions and poor general health status were recently identified in the Fleckvieh cattle population

Read more

Summary

Introduction

Bovine hereditary zinc deficiency (BHZD) is an autosomal recessive disorder of cattle, first described in Holstein-Friesian animals. This paper details a disorder that resembles Bovine Hereditary Zinc Deficiency (BHZD, OMIA 000593-9913), an autosomal recessive condition, primarily seen in Holstein-Friesian calves [4]. This disease is characterized by an impaired function of the immune system, growth retardation and skin alterations as a result of a deficient gastrointestinal zinc absorption [5]. Highlydosed oral zinc supplementation ameliorates clinical symptoms in affected Holstein-Friesian animals, if untreated, BHZD is lethal [5]. Hereditary zinc absorption disorders have not yet been described in the Fleckvieh population

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call