Abstract

Cell-attached patch clamp recordings from unfertilized oocytes of the ascidian Boltenia villosa reveal an ion channel which is activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette, but not in the absence of suction or during voltage steps. The estimated density of these stretch-activated channels is about 1.5/microns2, a figure equal to or greater than the density of known voltage-dependent channels in the oocyte. Ion substitution experiments done with combined whole-cell and attached patch recording, so absolute potentials are known, indicate that the channel passes Na+, Ca2+ and K+, but not Cl-. The channel has at least two open and two closed states, with the rate constant that leaves the longer-lived closed state being the primary site of stretch sensitivity. External Ca2+ concentration affects channel kinetics: at low calcium levels, long openings predominate, whereas at high calcium virtually all openings are to the short-lived open state. In multiple channel patches, the response to a step change in suction is highly phasic, with channel open probability decreasing over several hundred milliseconds to a nonzero steady-state level after an initial rapid increase. This channel may play a role in the physiological response of cells of the early embryo to the membrane strains associated with morphogenetic events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call