Abstract
Current estimation methods for the probability of causation (PC) make strong parametric assumptions or are inefficient. We derive a nonparametric influence-function-based estimator for a projection of PC, which allows for simple interpretation and valid inference by making weak structural assumptions. We apply our estimator to real data from an experiment in Kenya, which found, by estimating the average treatment effect, that protecting water springs reduces childhood disease. However, before scaling up this intervention, it is important to determine whether it was the exposure, and not something else, that caused the outcome. Indeed, we find that some children, who were exposed to a high concentration of bacteria in drinking water and had a diarrheal disease, would likely have contracted the disease absent the exposure since the estimated PC for an average child in this study is 0.12 with a 95% confidence interval of (0.11, 0.13). Our nonparametric method offers researchers a way to estimate PC, which is essential if one wishes to determine not only the average treatment effect, but also whether an exposure likely caused the observed outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.