Abstract

We propose a nonparametric item response theory model for dichotomously-scored items in a Bayesian framework. The model is based on a latent class (LC) formulation, and it is multidimensional, with dimensions corresponding to a partition of the items in homogenous groups that are specified on the basis of inequality constraints among the conditional success probabilities given the latent class. Moreover, an innovative system of prior distributions is proposed following the encompassing approach, in which the largest model is the unconstrained LC model. A reversible-jump type algorithm is described for sampling from the joint posterior distribution of the model parameters of the encompassing model. By suitably post-processing its output, we then make inference on the number of dimensions (i.e., number of groups of items measuring the same latent trait) and we cluster items according to the dimensions when unidimensionality is violated. The approach is illustrated by two examples on simulated data and two applications based on educational and quality-of-life data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.