Abstract
This paper provides a nonparametric model of multi-step ahead forecasting in diffusion processes. The model is constructed from the local linear model with the Gaussian kernel. The paper provides simulation studies to evaluate its performance of multi-step ahead forecasting by comparing with the global linear model, showing the better forecasting performance of the nonparametric model than the global linear model. The paper also conducts empirical analysis for forecasting using intraday data of the Japanese stock price index and the time series of heart rates. The result shows the performance of forecasting does not differ much in the Japanese stock price index, but that the nonparametric model shows significantly better performance in the analysis of the heart rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.