Abstract

Lifetime data collected at product design and production stage or field operational stage often exhibit heterogeneity patterns, making the homogeneity assumption in conventional statistical lifetime models invalid. Mixture models are important modeling approaches that account for data heterogeneity. However, existing mixture models are constrained by assuming an known number of sub-populations. This paper proposes a new Bayesian statistical model to analyze heterogeneous lifetime data by assuming an unknown number of sub-populations. Each sub-population is characterized by an accelerated failure time model to quantify the effects of possible reliability impact factors. The proposed model allows simultaneous identification of the number of sub-populations and the model parameters of sub-populations. Convenient sampling strategies are further proposed to address the challenges of model estimation. Both numerical case study and real case study are provided to illustrate the proposed approach and demonstrate its validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.