Abstract
Integrating structural health monitoring (SHM) data into reliability assessment has increasingly been practiced in the condition evaluation of in-service bridges over the past decade. The selection of probability distribution models for load- and resistance-related random variables is a prerequisite for monitoring-based reliability assessment. However, the underlying probabilistic assumptions of the used models could be restrictive and unverifiable especially when dealing with real-world heterogeneous monitoring data, weakening the confidence on the estimated reliability index. This study aims to develop a nonparametric Bayesian model with the Dirichlet process prior for bridge reliability assessment, where the model order constraint can be released such that the complexity of the model adapts to the observed data. Reliability analysis via the nonparametric Bayesian model allows the aleatory uncertainty and the epistemic uncertainty arising from monitoring data to be concurrently accounted for in the formulated reliability index. A numerical example is presented to verify the effectiveness of the nonparametric Bayesian model for dealing with multimodal data. The feasibility of the proposed approach for reliability assessment is then demonstrated with one-year strain monitoring data acquired from a large-scale bridge instrumented with the SHM system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.