Abstract

In spirit of extended-Hückel approximations, we have developed a nonorthogonal tight-binding total energy model for hydrocarbons with only a few adjustable parameters. Our model reproduces the geometry structures, binding energies, on-site charge transfer and vibrational frequencies of a variety of hydrocarbon molecules reasonably well. Comparative calculations on carbon fullerenes and nanotubes using tight-binding model and density functional theory demonstrate the potential of applying this model to large scale simulations of carbon nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.