Abstract

Estimates of the amount of force exerted by a muscle using electromyography (EMG) rely partially upon the accuracy of the reference point used in the normalization technique. Accurate representations of muscle activities are essential for use in EMG-driven spinal loading models. The expected maximum contraction (EMC) normalization method was evaluated to explore whether it could be used to assess individuals who are not capable of performing a maximum exertion such as a person with a low back injury. Hence, this study evaluated the utility of an EMG normalization method (Marras and Davis, A non-MVC EMG normalization technique, Part 1, method development. Journal of Electromyography and Kinesiology 2000) that draws upon sub-maximal exertions to determine the reference points needed for normalization of the muscle activities. The EMC normalization technique was compared to traditional MVC-based EMG normalization by evaluating the spinal loads for 20 subjects (10 males and 10 females) performing dynamic lifts. The spinal loads (estimated via an EMG-assisted model) for the two normalization techniques were very similar with differences being <8%. The model performance variables indicated that both normalization techniques performed well ( r 2>0.9 and average error below 6%) with only the muscle gain being affected by normalization method as a result in different reference points. Based on these results, the proposed normalization technique was considered to be a viable method for EMG normalization and for use in EMG-assisted models. This technique should permit the quantitative evaluation of muscle activity for subjects unable to produce maximum exertions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.