Abstract

AbstractIn this paper we propose an easy-to-implement algorithm for solving general nonlinear optimization problems with nonlinear equality constraints. A nonmonotonic trust region strategy is suggested which does not require the merit function to reduce its value in every iteration. In order to deal with large problems, a reduced Hessian is used to replace a full Hessian matrix. To avoid solving quadratic trust region subproblems exactly which usually takes substantial computation, we only require an approximate solution which requires less computation. The calculation of correction steps, necessary from a theoretical view point to overcome the Maratos effect but which often brings in negative results in practice, is avoided in most cases by setting a criterion to judge its necessity. Global convergence and a local superlinear rate are then proved. This algorithm has a good performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.