Abstract

AbstractThe eigenvalues of tensors become more and more important in the numerical multilinear algebra. In this paper, based on the nonmonotone technique, an accelerated Levenberg–Marquardt (LM) algorithm is presented for computing the ‐eigenvalues of symmetric tensors, in which an LM step and an accelerated LM step are computed at each iteration. We establish the global convergence of the proposed algorithm using properties of symmetric tensors and norms. Under the local error‐bound condition, the cubic convergence of the nonmonotone accelerated LM algorithm is derived. Numerical results show that this method is efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.