Abstract

In this paper, we propose a nonlocal total variation (NLTV)-based variational model for polarimetric synthetic aperture radar (PolSAR) data speckle reduction. This model, named WisNLTV, is obtained based on the Wishart fidelity term and the NLTV regularization defined for the complex-valued fourth-order tensor data. Since the proposed model is non-convex, an equivalent bi-convex model is obtained using the property of conjugate functions. Then, an efficient iteration algorithm is developed to solve the equivalent bi-convex model, based on the alternating minimization and the forward-backward operator splitting technique. The proposed iteration algorithm is proved to be convergent under certain conditions theoretically and numerically. Experimental results on both synthetic and real PolSAR data demonstrate that the proposed method can effectively reduce speckle noise and, meanwhile, better preserve the details and the repetitive structures such as textures and edges, and the polarimetric scattering characteristics, compared with the other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.