Abstract
Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.