Abstract

The median filtering heuristic is considered to be an indispensable tool for the currently popular variational optical flow computation. Its attractive advantages are that outliers reduction is attained while image edges and motion boundaries are preserved. However, it still may generate blurring at image edges and motion boundaries caused by large displacement, motion occlusion, complex texture, and illumination change. In this paper, we present a non-local propagation filtering scheme to deal with the above problem during the coarse-to-fine optical flow computation. First, we analyze the connection between the weighted median filtering and the blurring of image edge and motion boundary under the coarse-to-fine optical flow computing scheme. Second, to improve the quality of the initial flow field, we introduce a non-local propagation filter to reduce outliers while preserving context information of the flow field. Furthermore, we present an optimization combination of non-local propagation filtering and weighted median filtering for the flow field estimation under the coarse-to-fine scheme. Extensive experiments on public optical flow benchmarks demonstrate that the proposed scheme can effectively improve the accuracy and robustness of optical flow estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.