Abstract

We consider both stationary and time-dependent heat equations for a non-convex body or a collection of disjoint conducting bodies with Stefan-Boltzmann radiation conditions on the surface. The main novelty of the resulting problem is the non-locality of the boundary condition due to self-illuminating radiation on the surface. Moreover, the problem is nonlinear and in the general case also non-coercive. We show that the non-local boundary value problem admits a maximum principle. Hence, we can prove the existence of a weak solution assuming the existence of upper and lower solutions. This result is then applied to prove existence under some hypotheses that guarantee the existence of sub- and supersolutions. Some special cases where the problem is coercive are also discussed. Finally, the analysis is extended to cases with nonlinear material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.