Abstract

In this study, we start from a Follow-the-Leaders model for traffic flow that is based on a weighted harmonic mean (in Lagrangian coordinates) of the downstream car density. This results in a nonlocal Lagrangian partial differential equation (PDE) model for traffic flow. We demonstrate the well-posedness of the Lagrangian model in the L1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^1$$\\end{document} sense. Additionally, we rigorously show that our model coincides with the Lagrangian formulation of the local LWR model in the “zero-filter” (nonlocal-to-local) limit. We present numerical simulations of the new model. One significant advantage of the proposed model is that it allows for simple proofs of (i) estimates that do not depend on the “filter size” and (ii) the dissipation of an arbitrary convex entropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call