Abstract

We introduce here a nonlocal operator as a natural generalization to the biharmonic operator that appears in plate theory. This operator is built in the nonlocal calculus framework defined by Du et al. and its connected with the recent theory of peridynamics. For the steady state equation coupled with different boundary conditions we show existence and uniqueness of solutions, as well as regularity of solutions. The boundary conditions considered are nonlocal counterparts of the classical clamped and hinged boundary conditions. For each system we show convergence of the nonlocal solutions to their local equivalents using compactness arguments developed by Bourgain, Brezis and Mironescu.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.