Abstract
Solid propellant is a composite material exhibiting classic nonlinear viscoelastic mechanical characteristic, which is due in a large part to a cumulative damage process caused by the formation and growth of microflaws inside. The standard relaxation tests and uniaxial tension tests under different velocities of hydroxyl-terminated polybutadiene (HTPB) propellant are carried out in this paper, where Digital Image Correlation (DIC) technique is applied to record deformation. The experimental results show that the material mechanical behavior is rate-dependent. It is also observed that the yield stress and failure stress are significantly rate-dependent on the tensile velocity. Based on these experimental results, it can be inferred that the stiffness degradation and damage evolution of HTPB propellant are a rate-dependent processes. Therefore, the damage accumulation of HTPB propellant is considered rate-dependent in this research. In order to describe the mechanical characteristic precisely, a nonlinear viscoelastic constitutive model with rate-dependent cumulative damage is developed. The damage model is developed based on the concept of pseudo strain, in which a Prony series representation of viscoelastic material functions is applied. Besides, a rate-dependent damage variable is introduced into the model through considering the rate-dependent characteristics of cumulative damage process. In addition, a new normalized failure criterion is derived on the basis of the proposed damage model, which is independent of strain-rate after normalization. Finally, it is implemented in commercial finite element software for stress analysis to verify the predictive capacities of the damage model. The accuracy of the constitutive model and failure criterion is validated under uniaxial tensile tests of various strain rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.