Abstract

<p style='text-indent:20px;'>A nonlinear version of Halanay's inequality is studied in this paper as a sufficient condition for the convergence of functions to the origin, uniformly with respect to bounded sets of initial values. The same result is provided in the case of forcing terms, for the uniform convergence to suitable neighborhoods of the origin. Related Lyapunov methods for the global uniform asymptotic stability and the input-to-state stability of systems described by retarded functional differential equations, with possibly nonconstant time delays, are provided. The relationship with the Razumikhin methodology is shown.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.