Abstract

Fatigue is a major cause of failure in marine structures resulting from random wave and wind loading. A nonlinear ultrasound method for fatigue evaluation which uses interaction of two non-collinear nonlinear ultrasonic waves with quadratic nonlinearity is investigated in this paper. A hyperbolic system of conservation laws is applied here and a semi-discrete central scheme is used to solve the numerical problem. The numerical results prove that a resonant wave can be generated by two primary waves with certain resonant conditions. Features of the resonant wave are analyzed both in the time and frequency domains, and several regularities are found on intensity distribution of the resonant wave in two-dimensional domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.