Abstract

This paper presents a nonlinear size-dependent Timoshenko beam model based on the modified couple stress theory, a non-classical continuum theory capable of capturing the size effects. The nonlinear behavior of the new model is due to the present of induced mid-plane stretching, a prevalent phenomenon in beams with two immovable supports. The Hamilton principle is employed to determine the governing partial differential equations as well as the boundary conditions. A hinged–hinged beam is chosen as an example to delineate the nonlinear size-dependent static and free-vibration behaviors of the derived formulation. The solution for the static bending is obtained numerically. The solution for the free-vibration is presented analytically utilizing the method of multiple scales, one of the perturbation techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call