Abstract

An important and widely neglected aspect of the interaction between an accretion disc and a massive companion with a coplanar orbit is the vertical component of the tidal force. As shown by Lubow, the response of the disc to vertical forcing is resonant at certain radii, at which a localized torque is exerted, and from which a compressive wave (p mode) may be emitted. Although these vertical resonances are weaker than the corresponding Lindblad resonances, the m=2 inner vertical resonance in a binary star is typically located within the tidal truncation radius of a circumstellar disc. In this paper I develop a general theory of vertical resonances, allowing for non-linearity of the response, and dissipation by radiative damping and turbulent viscosity. The problem is reduced to a universal, non-linear ordinary differential equation with two real parameters. Solutions of the complex non-linear Airy equation are presented to illustrate the non-linear saturation of the resonance and the effects of dissipation. It is argued that the m=2 inner vertical resonance is unlikely to truncate the disc in cataclysmic variable stars, but contributes to angular momentum transport and produces a potentially observable non-axisymmetric structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call