Abstract

A thermodynamic and micro-statistical model is proposed to explain the magnetization and magnetostriction mechanisms for isotropic ferromagnetic materials. Here a nonlinear magnetostrictive expression enhances the characterization of the nonlinear magnetic-mechanical effect, and the Brillouin function makes it possible to describe the relationship between the equivalent field and magnetization for various types of materials. Through detailed comparisons with the recent models of Wu et al. [Appl. Phys. Lett. 115 (2019) 162406] and Daniel [Eur. Phys. J.: Appl. Phys. 83 (2018) 30904], it is confirmed that the proposed model can provide greater physical insight and a more accurate description of the complex magnetostriction and magnetization behaviors, especially the complex nonlinearity of stress effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.