Abstract
Biomedical data analysis is essential in current diagnosis, treatment, and patient condition monitoring. The large volumes of data that characterize this area require simple but accurate and fast methods of intellectual analysis to improve the level of medical services. Existing machine learning (ML) methods require many resources (time, memory, energy) when processing large datasets. Or they demonstrate a level of accuracy that is insufficient for solving a specific application task. In this paper, we developed a new ensemble model of increased accuracy for solving approximation problems of large biomedical data sets. The model is based on cascading of the ML methods and response surface linearization principles. In addition, we used Ito decomposition as a means of nonlinearly expanding the inputs at each level of the model. As weak learners, Support Vector Regression (SVR) with linear kernel was used due to many significant advantages demonstrated by this method among the existing ones. The training and application procedures of the developed SVR-based cascade model are described, and a flow chart of its implementation is presented. The modeling was carried out on a real-world tabular set of biomedical data of a large volume. The task of predicting the heart rate of individuals was solved, which provides the possibility of determining the level of human stress, and is an essential indicator in various applied fields. The optimal parameters of the SVR-based cascade model operating were selected experimentally. The authors shown that the developed model provides more than 20 times higher accuracy (according to Mean Squared Error (MSE)), as well as a significant reduction in the duration of the training procedure compared to the existing method, which provided the highest accuracy of work among those considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.