Abstract

The interaction between an electron beam and the plasma oscillations it excites in traversing a plasma region effectively changes the magnitude and direction of the force between beam electrons. This effect has been studied theoretically and experimentally by computing and observing beam electron velocities and phases for a beam which is initially velocity modulated at frequency ω and allowed to drift through a plasma filled region of plasma frequency ωp. When ω > ωp the force between electrons is repulsive and effectively increases in magnitude as ω approaches ωp. When ω The beam behavior is studied theoretically by computing in an exact, nonlinear manner, the trajectories of a disc model electron beam which traverses a linear, dielectric model plasma. The parameters varied are the beam space charge conditions (beam current), the degree of initial velocity modulation, and the ratio of modulation frequency to plasma frequency (ω/ωp) Computations show that it is possible to bunch the beam electrons to within 85% of delta function bunching under some beam and plasma conditions. The electron beam behavior is studied experimentally by observing the beam electron velocity phase distribution with a crossed-field velocity analyzer, and observing the beam current waveform (density-phase distribution) using a wide-band sampling oscilloscope. Experimental results show essentially the same beam behavior as predicted by the computations with some differences which are attributed to variation in the plasma density along the beam path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.