Abstract
A rigorous nonlinear stability result is derived by introducing a suitable generalized energy functional for a magnetized ferrofluid layer heated and soluted from below with magnetic-field-dependent (MFD) viscosity saturating a porous medium, in the stress-free boundary case. The mathematical emphasis is on how to control the nonlinear terms caused by the magnetic-body and inertia forces. For ferrofluids, we find that there is possibility of existence of subcritical instabilities, however, it is noted that, in case of a non-ferrofluid, the global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of the magnetic parameter, M3; solute gradient, Sf; Darcy number, Da; and MFD viscosity parameter, δ; on the subcritical instability region has also been analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.