Abstract
In this work, a novel nonlinear self-tuning adaptive control scheme based on the neural Wiener model has been proposed to copy with a class of nonlinear uncertain systems. First the parameterization model with uncertain parameters is derived based on a linear transfer function model followed by neural networks. Then based on the performance index, the adaptive control strategy includes the system parameters identification and the control law calculation. Since the networks are linearly described by some basis functions, the closed-loop system stability can be ensured under some realistic assumptions. Finally, the proposed controller is applied to a pH control problem. The simulation results have demonstrated that the proposed nonlinear self-tuning control method is applicable, especially for its reliable set-point tracking and adaptive abilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.