Abstract

The surface gravity-capillary waves on deep water with constant vorticity in the regionbounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformal variables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained. bounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformalvariables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.