Abstract

Scalarization method is an important tool in the study of vector optimization as corresponding solutions of vector optimization problems can be found by solving scalar optimization problems. In this paper we introduce a nonlinear scalarization function for a variable domination structure. Several important properties, such as subadditiveness and continuity, of this nonlinear scalarization function are established. This nonlinear scalarization function is applied to study the existence of solutions for generalized quasi-vector equilibrium problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.