Abstract

The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear rheological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we calculated the unstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.