Abstract

In this paper we consider $r(x)-$Kirchhoff type equation with variable-exponent nonlinearity of the form $$ u_{tt}-\Delta u-\big(a+b\int_{\Omega}\frac{1}{r(x)}|\nabla u|^{r(x)}dx\big)\Delta_{r(x)}u+\beta u_{t}=|u|^{p(x)-2}u, $$ associated with initial and Dirichlet boundary conditions. Under appropriate conditions on $r(.)$ and $p(.)$, stability result along the solution energy is proved. It is also shown that regarding arbitrary positive initial energy and suitable range of variable exponents, solutions blow-up in a finite time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call