Abstract
AbstractThis article presents a nonlinear programming algorithm for finite element limit analysis (FELA) based on feasible arc searching technique (FAST). The proposed algorithm has the potential to significantly reduce the iteration numbers required for convergence, making it a valuable tool for solving complex optimization problems from FELA. The algorithm also introduces several new features to the existing methods, including: (i) a novel method for determining a reasonable updating step length; (ii) the avoidance of solving an additional “phase one problem” for finding an initial feasible point; and (iii) the proposition of an empirical criterion for detecting infeasibility problems. The effectiveness of the proposed approach has been demonstrated through several classic examples derived from geotechnical engineering. The initial two examples show the superior convergence speed of the novel approach compared to existing methods. Additionally, the third example highlights the efficacy of the feasibility detection criterion for problems involving both prescribed and unknown external forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.