Abstract

An approach for the determination of principal components using nonlinear principal component analysis (NLPCA) is proposed in the context of turbulent combustion. NLPCA addresses complex data sets where the contours of the inherent principal directions are curved in the original manifold. Thermo-chemical scalars' statistics are reconstructed from the optimally derived moments. The tabulation of the scalars is then implemented, using artificial neural networks (ANN). The approach is implemented on numerical data generated for the stand-alone one-dimensional turbulence (ODT) simulation of hydrogen autoignition in a turbulent jet with preheated air. It is found that 2 nonlinear principal components are sufficient to capture thermo-chemical scalars' profiles. For some of the scalars, a single principal component reasonably captures the scalars' profiles as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.