Abstract
Truck and N-trailer mobile robots find use in freight transportation, urban transportation, mining as well as in agriculture. The article proposes a nonlinear optimal (H-infinity) control approach for the truck and N-trailer robotic system. The method has been successfully tested so far on the control problem of several types of robotic vehicles and here it is shown that it can also provide an optimal solution to the control problem of the underactuated truck and N-trailer mobile robot. To implement this control scheme, the state-space description of the kinematic model of the truck and N-trailer robotic system undergoes first approximate linearization around a temporary operating point, through first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Next, an optimal (H-infinity) feedback controller is designed. To select the feedback gains of the optimal (H-infinity) controller an algebraic Riccati equation is solved at each time-step of the control method. The global stability properties of the control loop are proven through Lyapunov analysis. Finally, to implement state estimation-based feedback control, the H-infinity Kalman Filter is used as a robust state estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.