Abstract

The nonlinear beam-slider structure, which consists of a nonlinear cantilever beam and a free movable slider, can always obtain the high-energy orbit to achieve passive self-adaption in a wide bandwidth. The efficiency improvement of this structure has been demonstrated in energy harvesting application. In this work, the nonlinear beam-slider structure is applied as a vibration neutralizer. The behavior of the 2-degree-of-freedom (2-DOF) vibration system is investigated experimentally. The trajectory of the slider, time history response of the nonlinear beam and the linear primary structure are recorded simultaneously. The results show that the nonlinear neutralizer with appropriate parameters has broader bandwidth than the linear one. However, there are multiple solutions corresponding to different vibration states of the nonlinear neutralizer in the suppression frequency range. The vibration of linear primary structure can be suppressed only when the nonlinear neutralizer obtains the certain energy orbit at the given frequency range. The free movable slider can assist the nonlinear beam to obtain the high-energy orbit in multi-solution range (28 Hz-31 Hz). In the frequency range of 28 Hz-31 Hz, the nonlinear neutralizer on the high-energy orbit enhances the vibration suppression performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call