Abstract

The hub-motor electric vehicle (HM-EV) is considered as an ideal configuration for electric vehicles (EVs). However, the electromechanical coupling effect deteriorates HM-EV ride comfort, which limits its widespread application in EVs. In this study, the HM-EV dynamic system with air springs is proposed to intervene in vehicle attitude and ride comfort. The HM-EV dynamic model with air spring, considering the electromechanical coupling effect, is established and the test validation is investigated. Then quasi-infinite horizon nonlinear model predictive control (QIH NMPC) is designed to improve the longitudinal and vertical dynamic performance. The dynamic performance of passive suspension, air suspension based on QIH NMPC, air suspension based on MPC, and PID control receptively, are compared under several random road scenarios. Finally, the results indicated that the proposed control algorithm can improve ride comfort, reduce motor vibration, and improve longitudinal and vertical dynamic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call